COMPLETELY MONOTONE SEQUENCES AS INVARIANT MEASURES(1)

BY RICHARD SCOVILLE

Introduction. A completely monotone sequence $a = (a_0, a_1, a_2, \cdots)$ of real numbers is a sequence which satisfies the conditions

(1)
$$(\Delta^n a)_k \ge 0 \quad (n = 0, 1, 2, \dots; k = 0, 1, 2, \dots)$$

where the operator Δ , acting on any sequence a, is the sequence Δa defined by

$$(\Delta a)_k = a_k - a_{k+1}$$
 $(k = 0, 1, 2, \cdots).$

During the first part of the paper we will suppose that the completely monotone sequence a also satisfies

(2)
$$\sum_{n=0}^{\infty} a_n = 1.$$

Using the sequence a, we will construct a probability space (X, \mathcal{B}, μ) and a measure-preserving transformation T on it. This transformation will not, in general, be ergodic. We then make use of the Kryloff-Bogoliouboff decomposition [4] (as extended by Oxtoby [5]) of a measure into its ergodic parts. Writing μ as an integral of measures for which T is ergodic, and observing the effect of this decomposition on the sequence a, we obtain the classical reduction of a to the form

$$a_k = \int_0^1 t^k dF(t)$$
 $(k = 0, 1, 2, \dots).$

An inversion formula, similar to Feller's [2], giving F in terms of a can also be obtained in this way. In the last part of the paper we investigate the transformation T itself, and leave several interesting questions unanswered.

This paper is the major part of the author's dissertation prepared at Yale University under the direction of S. Kakutani, whom I wish to thank for his advice, encouragement and great skill.

 (X, \mathcal{B}, μ) and the transformation T. Let us assume, then, that a sequence a satisfying (1) and (2) has been given and proceed with the construction of (X, \mathcal{B}, μ) .

Received by the editors April 15, 1963.

⁽¹⁾ This research was supported in part by the United States Air Force under Grant AF AFOSR 61-51, monitored by the Air Force Office of Scientific Research of the Air Research and Development Command.

Let I_{∞} be the one-point compactification of the non-negative integers, with ∞ the added point. We form the compact space

$$X'' = \prod_{i=1}^{\infty} X_i \quad (X_i = I_{\infty}, i = 1, 2, 3, \cdots)$$

and consider the closed subset X' of X'' consisting of all sequences in X'' which are increasing (not necessarily strictly increasing), thinking of ∞ as being greater than every integer.

By a rectangle $(r_1, r_2, r_3, \dots, r_k)$ where $0 \le r_1 \le r_2 \le \dots \le r_k$, is meant all sequences in X' beginning with $r_1, r_2, r_3, \dots, r_k$, i.e., all sequences ω in X' for which $\omega_i = r_i$ $(i = 1, 2, 3, \dots, k)$. The measure of a rectangle $R = (r_1, r_2, \dots, r_k)$ is defined as follows:

(3)
$$\mu(R) = \begin{cases} (\Delta^{k-1} \mathbf{a})_{r_k} & \text{if } r_k \neq \infty, \\ 0 & \text{if } r_k = \infty. \end{cases}$$

Let \mathscr{A} be the (finitely additive) algebra consisting of all sets of X' which depend on only a finite number of coordinates, i.e., $\mathscr{A} = \bigcup \mathscr{A}_n$ where \mathscr{A}_n consists of sets which can be written as the union of rectangles of length n. The measure of any set in \mathscr{A} may now be defined by writing the set as a union of disjoint rectangles. This measure can be extended to a countably additive measure (again called μ) defined on \mathscr{B} , the smallest σ -field containing \mathscr{A} . Since μ is a regular measure on \mathscr{A} , this can be accomplished, for instance, by means of a theorem of Alexandroff [2, p. 138].

We let X be the subset of X' consisting of those sequences in which ∞ does not appear. The complement of X in X' may be written

$$X^{c} = \bigcup_{n=1}^{\infty} \bigcup_{\substack{i_{1} \leq i_{2} \leq \dots \leq i_{n}}}^{\infty} (i_{1}, i_{2}, \dots, i_{n}, \infty).$$

This set clearly has measure zero, no matter what the sequence a may be, so we see that X has measure one. From now on when we speak of rectangles we mean rectangles restricted to the space X.

The transformation T is defined at a point $\omega = (\omega_1, \omega_2, \omega_3, \cdots)$ of X as follows:

(4)
$$T\omega = \begin{cases} \underbrace{(0,0,\cdots,0,}_{n-1} & \omega_n + 1, & \omega_{n+1},\cdots) \text{ if } \omega_1 = \omega_n < \omega_{n+1}, \\ (0,0,0,\cdots) & \text{if } \omega_1 = \omega_2 = \omega_3 = \cdots. \end{cases}$$

Suppose $R = (r_1, r_2, \dots, r_n)$ is a rectangle in X. If $r_1 \neq 0$, the image of R under T^{-1} is again a rectangle: $(r_1 - 1, r_2, \dots, r_n)$. If $0 = r_1 = r_2 = \dots = r_k$ but $r_{k+1} \neq 0$ where k < n, the inverse image of R is the rectangle

$$\underbrace{(r_{k+1}-1,r_{k+1}-1,\cdots,r_{k+1}-1)}_{k+1}, r_{k+2},\cdots,r_n).$$

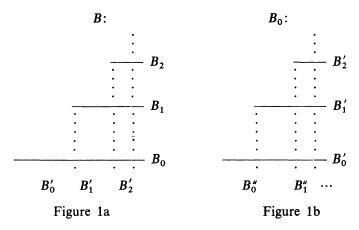
If, finally, $0 = r_1 = r_2 = \cdots = r_n$, the inverse image of R is, except for the constant sequences, the disjoint union

$$\bigcup_{p=1}^{\infty}\bigcup_{j=1}^{\infty}\bigcup_{i=0}^{j-1} \qquad (\underbrace{i,i,\cdots,i,j}_{i,j}).$$

Hence in any case the inverse image under T of any rectangle R is essentially a union of rectangles and so in particular is measurable. It is possible to calculate the measure of $T^{-1}R$ directly from formula (3) to show that T is measure-preserving, but the following "geometric" description of T is more enlightening but not essential to the development of the paper. This idea has been used before, for instance in [1].

We construct a sequence of line segments, B_0, B_1, B_2, \cdots , one above the other as in Figure la so that the segment B_n has length a_n . Let us call the object so obtained a building and also regard it as a measure space by giving to each linear Borel set in the building its ordinary (linear) Lebesgue measure. Now if there were a measure-preserving transformation, say S, defined on B_0 , we could construct a measure-preserving transformation T on the building B by sending any point to the point directly above on the next floor, if possible, otherwise by descending straight down to B_0 and moving by S. Then S is simply the transformation induced by T on B_0 , of which we will speak later. What remains then is to define the transformation S on B_0 .

We can partially define S on B_0 by writing B_0 itself as a building as in Figure 1b so that the segment B_n' has length $a_n - a_{n+1}$. S is now partially defined on B_0 simply by rising one floor, if possible. To continue its definition, we must write B_0' as a building in a way similar to the way we wrote B_0 as a building. Eventually then, S and hence T will be completely defined except perhaps on a set of measure zero. That we continue to get a building at each stage is due to the requirement (1) on the sequence a. The floors of the nth stage building will have lengths $(\Delta^{n-1}a)_0$, $(\Delta^{n-1}a)_1$, \cdots .



The transformation T defined on X is said to be *conjugate* to the transformation S on Y if there is a 1-1 measure-preserving map ϕ from (almost all of) X onto (almost all of) Y such that ϕ^{-1} is measurable and $T = \phi^{-1} \circ S \circ \phi$. We can now show the relation between the two measure-preserving transformations defined so far.

LEMMA. The transformation T defined on B is conjugate to the transformation T defined on X by (4).

Proof. We can give coordinates to a point ω in B. Let ω_1 be the integer satisfying $\omega \in B_{\omega_1}$. Drop ω to the first floor of B and call this point ω' . Let ω_2 be the integer satisfying $\omega' \in B'_{\omega_2}$. Drop ω' to the first floor of B_0 and call this point ω'' . Let ω_3 satisfy $\omega'' \in B''_{\omega_3}$, etc. This correspondence $\omega \to (\omega_1, \omega_2, \cdots)$ from B to X is easily seen to establish the conjugacy of T on B and C on C.

The measures μ for which T is ergodic. Since we will have to speak of several completely monotone sequences and their corresponding measures, we now write μ_a for the measure defined on X by means of the sequence a, and T_a for the corresponding transformation previously called simply T. Of course all the transformations T_a are identical, but we may wish to distinguish a particular measure μ_a which T preserves. In this case, we write T_a . For instance we could ask are T_a and T_b conjugate?

If **a** and **b** are completely monotone sequences which also satisfy (2), clearly any convex combination $\alpha a + \beta b$ is another. In fact, because of the linearity of Δ ,

(5)
$$\alpha \mu_a + \beta \mu_b = \mu_{\alpha a + \beta b}.$$

Also, given a completely monotone sequence $a \neq (1,0,0,0,\cdots)$, we can form two others, namely σa and τa defined by

(6)
$$(\sigma \mathbf{a})_n = a_{n+1}/(1-a_0),$$

$$(\tau \mathbf{a})_n = (a_n - a_{n+1})/a_0 \qquad (n = 0, 1, 2, \cdots).$$

These sequences also satisfy (2) if a does.

Let $T_a \mid C$ be the transformation induced by T_a on the subset C of X of all sequences in X having first coordinate zero, and let $T_a \mid \tilde{C}$ be the induced transformation on $\tilde{C} = X - C$. Hence for instance $T_a \mid C$ is defined at a point ω of C by $T_a \mid C(\omega) = T^k \omega$ where k is the first positive integer for which $T^k(\omega) \in C$. $T_a \mid C$ is a measure preserving transformation on C. We call the measure ρ defined on subsets E of C by $\rho(E) = \mu_a(E)/\mu_a(C)$ the induced measure on C.

LEMMA. Suppose $a \neq (1,0,0,\cdots)$. Then the transformation $T_a \mid C$ on C with its induced measure, is conjugate to the transformation $T_{\tau a}$ on X. Also, $T_a \mid \tilde{C}$ on \tilde{C} with its induced measure is conjugate to $T_{\sigma a}$.

Proof. A glance at the buildings is probably enough to convince the reader of this fact, but we will construct mappings $\phi: C \to X$ and $\psi: \widetilde{C} \to X$ which give the conjugacy explicitly. Let $\phi(\omega) = (\omega_2, \omega_3, \cdots), \omega \in C$ and $\psi(\omega) = (\omega_1 - 1, \omega_2 - 1, \cdots), \omega \in \widetilde{C}$. Suppose $R = (r_1, r_2, \cdots, r_k)$ is a rectangle in X. We must show that

$$\mu_{ra}(R) = \mu_{a}(\phi^{-1}R)/\mu_{a}(C)$$

and

$$\mu_{\sigma a}(R) = \mu_a(\psi^{-1}R)/\mu_a(\tilde{C}).$$

Since $\phi^{-1}(R) = (0, r_1, r_2, \dots, r_k)$, from (3) and (6) we get

$$\mu_{\tau a}(R) = (\Delta^{k-1} \tau a)_{r_k} = (1/a_0) (\Delta^k a)_{r_k}$$
$$= (1/\mu_a(C)) \mu_a(\phi^{-1} R).$$

Similarly, $\psi^{-1}(R) = (r_1 + 1, r_2 + 1, \dots, r_k + 1)$ so that

$$\mu_{\sigma a}(R) = (\Delta^{k-1}\sigma a)_{r_k} = (1/(1-a_0))(\Delta^{k-1}a)_{r_k+1} = (1/\mu_a(\tilde{C}))\mu_a(\psi^{-1}(R)).$$

These equations show that ϕ and ψ are indeed measure-preserving isomorphisms between C with its induced measure and X, and between \widetilde{C} with its induced measure and X, resp. If $\omega = (0, \omega_2, \omega_3, \cdots)$ is any point in C, we see that $\phi \circ T_a \mid C(\omega) = T(\omega_2, \omega_3, \cdots) = T \circ \phi(\omega) = T_{\tau_a} \circ \phi(\omega)$ and in the same way, we can show that $\psi \circ T_a \mid \widetilde{C} = T_{\sigma a} \circ \psi$, proving the lemma.

LEMMA. If T_a is ergodic, then a is of the form

(7)
$$a_n = \theta^n (1 - \theta) \quad (n = 0, 1, 2, \dots)$$

for some θ , $0 \le \theta < 1$. (We set $\theta^0 \equiv 1$).

Proof. Suppose T_a is ergodic. If $a=(1,0,0,\cdots)$ then certainly a has the form required in the lemma. We exclude this case from what follows. Hence the induced transformations $T_a \mid C$ and $T_a \mid \widetilde{C}$ are defined, and they also are ergodic, since any transformation induced by an ergodic transformation is itself ergodic. Now by the previous lemma these induced transformations are conjugate to $T_{\tau a}$ and $T_{\sigma a}$ respectively so that $T_{\tau a}$ and $T_{\sigma a}$ are ergodic. Or what comes to the same thing T is ergodic with respect to the three measures $\mu_a, \mu_{\tau a}$ and $\mu_{\sigma a}$. But by (5) $\mu_a = (1-a_0)\mu_{\sigma a} + a_0\mu_{\tau a}$. This implies, as is well known, that $\mu_a = \mu_{\tau a} = \mu_{\sigma a}$. In particular, $a_n = a_{n+1}/(1-a_0)$, so that $a_n = (1-a_0)^n a_0$ $(n=0,1,2,\cdots)$. Setting $\theta = 1-a_0$, we get the lemma. The measure μ_a , where a is given by (7), will sometimes be written μ_{θ} .

We conclude this section with one more lemma.

LEMMA. If μ is a probability measure on X for which T is measure-preserving, then μ is of the form μ_a for some a satisfying (1) and (2).

Proof. We must set $a_n = \mu(n)$, where (n) is the rectangle consisting of all sequences in X beginning with n. Given any rectangle (r_1, r_2, \dots, r_k) , we may write it as the image, under an appropriate power of T^{-1} , of the rectangle

$$(\underbrace{r_k,r_k,\cdots,r_k}_{k}).$$

Hence

$$\mu(r_1, r_2, \dots, r_k) = \mu(\underbrace{r_k, r_k, \dots, r_k}_{k}).$$

Now by induction on n we can prove that

(8)
$$(\Delta^n \mathbf{a})_k = \mu(\underbrace{k, k, \cdots, k}_{n+1}) \quad (k = 0, 1, 2, \cdots).$$

For n = 0, this is just the definition of a_k . Suppose (8) is true for n = m - 1. Then

$$(\Delta^{m}a)_{k} = (\Delta^{m-1}a)_{k} - (\Delta^{m-1}a)_{k+1}$$

$$= \mu(\underbrace{k,k,\cdots,k}) - \mu(\underbrace{k+1,k+1,\cdots,k+1})$$

$$= \sum_{i=k}^{\infty} \mu(\underbrace{k,k,\cdots,k},i) - \mu(\underbrace{k+1,k+1,\cdots,k+1})$$

$$= \sum_{i=k+1}^{\infty} \mu(\underbrace{k,k,\cdots,k},i) - \mu(\underbrace{k+1,k+1,\cdots,k+1}) + (\underbrace{k,k,\cdots,k})$$

$$= \sum_{i=k+1}^{\infty} \mu(\underbrace{k+1,k+1,\cdots,k+1},i) - \mu(\underbrace{k+1,k+1,\cdots,k+1})$$

$$+ \mu(\underbrace{k,k,\cdots,k}) = \mu(\underbrace{k,k,\cdots,k}).$$

$$m+1 \qquad m+1$$

This proves (8) for all n and hence proves the lemma.

The decomposition of μ . Let us first discuss the continuity properties of the transformation T.

LEMMA. The transformation T on the set X is continuous. Moreover, T restricted to the subset U of X consisting of unbounded points

$$U = \{\omega \in X : \lim_{n} \omega_{n} = \infty \}$$

is one-to-one and onto.

Proof. The second statement of the lemma is clear. To prove the first, suppose ρ is a point in X and that ρ^n is a sequence of points in X converging to ρ . If ρ is

not a constant sequence, $T\rho$ is determined by a finite number k of coordinates of ρ , say ρ_1, \dots, ρ_k . But for large n the first k coordinates of ρ^n must also be ρ_1, \dots, ρ_k , and hence $T(\rho^n)$ converges to $T\rho$. On the other hand, if ρ is a constant sequence, the first l coordinates of ρ^n are eventually all the same so that $T(\rho^n)$ converges to $(0,0,\cdots)$ which is of course $T\rho$.

Thus we can say that the system (T, U) is a *Borel system*. As Oxtoby has shown, the essential features of the Kryloff-Bogoliouboff decomposition remain valid in such a system. Let us emphasize the fact that the results of the Kryloff-Bogoliouboff paper do not apply to our situation directly, although perhaps through a modification of the space X (or of its topology) they could be made applicable.

The result that we make use of is this: to almost every point ω of X (i.e., to every point in a set which has measure one under any invariant measure) we can assign an ergodic measure μ_{ω} in such a way that, for any bounded Borel-measurable function f on X, the function

(9)
$$\int f d\mu_{\omega}$$

is measurable and, moreover, for any invariant measure $\mu_{\mathbf{z}}$ on X, we have

(10)
$$\mu_{a}(R) = \int_{X} \mu_{\omega}(R) d\mu_{a}(\omega)$$

for any rectangle R in X.

Since μ_{ω} is ergodic, we have seen (7) that $\mu_{\omega} = \mu_{\theta}$ for some θ between 0 and 1. Let this number be $\theta(\omega)$. If, in equation (9), we put for f the characteristic function of the rectangle (0), we see that

$$\theta(\omega) = 1 - \int_{Y} f d\mu_{\omega}$$

is a measurable function on X. If we let R be the rectangle (n), equation (10) yields

(11)
$$a_n = \int_X \mu_{\theta(\omega)}(n) d\mu_a(\omega) = \int_X \theta(\omega)^n (1 - \theta(\omega)) d\mu_a(\omega).$$

Let $G_a(x)$ be the distribution function for $\theta(\omega)$ with respect to the measure μ_a , i.e.,

$$G_a(x) = \mu_a \{\theta(\omega) \le x\}$$

so that (11) becomes

$$a_n = \int_0^1 t^n (1-t) dG_a(t) \quad (n=0,1,2,\cdots).$$

Setting $F_a(x) = \int_0^x (1-t) dG_a(t)$ we get the usual form of the representation:

$$a_n = \int_0^1 t^n dF_a(t) \quad (n = 0, 1, 2, \cdots).$$

We are now in a position to prove the following theorem.

THEOREM. If $b = (b_0, b_1, b_2, \cdots)$ is any completely monotone sequence, there is an increasing function $F_b(x)$ defined on the unit interval such that

(12)
$$b_n = \int_0^1 t^n dF_b(t) \quad (n = 0, 1, 2, \cdots).$$

Proof. Let $b_* = \lim b_n$. The sequence a defined by $a_n = (b_n - b_{n+1})/(b_0 - b_*)$ $(n = 0, 1, 2, \cdots)$ is of course completely monotone, but also satisfies (2) (unless $b_0 = b_1 = \cdots = b_*$, but this case can easily be handled separately). Hence, from the remarks above, we have $a_n = \int_0^1 t^n dF_a(t)$ $(n = 0, 1, 2, \cdots)$. Let $F_b(x) = (b_0 - b_*)L(x) + b_*\delta(x)$ where $L(x) = \int_0^x (1/(1-t))dF_a(t)$ and $\delta(x) = 1$ if x = 1 and zero otherwise. Then

$$\int_{0}^{1} t^{n} dF_{b}(t) = (b_{0} - b_{*}) \int_{0}^{1} (t^{n}/(1-t)) dF_{a}(t) + b_{*} \int_{0}^{1} t^{n} d\delta(t)$$

$$= (b_{0} - b_{*}) \left(\int_{0}^{1} (1/(1-t)) dF_{a}(t) - \sum_{k=0}^{n-1} \int_{0}^{1} t^{k} dF_{a}(t) \right) + b_{*}$$

$$= b_{*} + (b_{0} - b_{*}) \left(\int_{0}^{1} (1/(1-t)) dF_{a}(t) - \sum_{k=0}^{n-1} (b_{k} - b_{k+1})/(b_{0} - b_{*}) \right)$$

$$= b_{*} + b_{n} - b_{0} + (b_{0} - b_{*}) \int_{0}^{1} (1/(1-t)) dF_{a}(t)$$

$$= b_{*} + b_{n} - b_{0} + (b_{0} - b_{*}) \int_{0}^{1} dG_{a}(t)$$

$$= b_{n}.$$

Hence (12) holds and this proves the theorem.

An inversion formula. We will now try to express the function G_a explicitly in terms of the sequence a.

LEMMA. There is a subset V of X which has measure one under any T-invariant probability measure and is such that if ω is any point of V,

(13)
$$\lim_{n} (\omega_n/n) = \theta(\omega)/(1 - \theta(\omega)).$$

Proof. We will represent the space X in yet another way as the space Y of all sequences of non-negative integers. We map a point ω in X to the sequence $(\omega_1, \omega_2, -\omega_1, \omega_3 - \omega_2, \cdots)$ in Y. If μ_{θ} is an ergodic measure on X, we find that the corresponding measure ν_{θ} on Y is given by

$$v_{\theta}(s_1, s_2, \dots, s_k) = \prod_{i=1}^k (1 - \theta)\theta^{s_i}$$

for any rectangle $S = (s_1, s_2, \dots, s_k)$ in Y. Hence v_θ is a product measure in Y which is invariant under the shift transformation $(s_1, s_2, s_3, \dots) \rightarrow (s_2, s_3, s_4, \dots)$. We apply the ergodic theorem, for the shift transformation, to the function f defined on Y by $f(s_1, s_2, \dots) = s_1$. Then for almost every (v_θ) point (s_1, s_2, \dots) in Y we have

$$\lim_{n} (s_1 + s_2 + \dots + s_n)/n = \int_{Y} f(s)dv_{\theta}(s)$$
$$= \sum_{i=0}^{\infty} i(1-\theta)\theta^{i} = \theta/(1-\theta)$$

or, in X,

$$\lim_{n} (\omega_n/n) = \theta/(1-\theta) \quad \mu_{\theta}\text{-a.e.}$$

Clearly $\theta(\omega) = \theta$ on a set V_{θ} of μ_{θ} -measure one. Hence the set V on which the two measurable functions $\theta(\omega)/(1-\theta(\omega))$ and $\lim_{n \to \infty} (\omega_n/n)$ coincide is a set which has measure one for any T-invariant measure. This proves the lemma.

THEOREM. If a is any completely monotone sequence satisfying (2), G_a is given by

(14)
$$G_a(x) = \lim_{n} \sum_{i=0}^{\lfloor nx/(1-x)\rfloor} {n+i-1 \choose n-1} (\Delta^n a)_i$$

at every point x at which G_a is continuous.

Proof. First, from (13), we see that $\theta(\omega) = \lim_{n \to \infty} \omega_n / (n + \omega_n)$, so that

$$\mu_a[\theta(\omega) < x] \leq \lim_n \mu_a[\omega_n/(n + \omega_n) < x]$$

$$\leq \mu_a[\theta(\omega) \leq x].$$

We calculate the center member of this inequality:

$$\mu_{a}[\omega_{n}/(n+\omega_{n}) < x] = \mu_{a}[\omega_{n} < nx/(1-x)]$$

$$= \sum_{i=0}^{\lfloor nx/(1-x)\rfloor} \mu_{a}[\omega_{n} = i] = \sum_{i=0}^{\lfloor nx/(1-x)\rfloor} {n+i-1 \choose n-1} (\Delta^{n}a)_{i}$$

where

$$\binom{n+i-1}{n-1}$$

is the number of rectangles of length n ending in i. Now, passing to the limit, we get

$$G_a(x-) \leq \sum_{i=0}^{\lfloor nx/(1-x)\rfloor} \binom{n+i-1}{n-1} (\Delta^n a)_i \leq G_a(x),$$

proving the theorem.

The transformations T_{θ} . We can obtain some information about the spectra of the measure-preserving transformations T_{θ} , although the results in this section are incomplete and probably not the best possible. Let us begin with the following theorem.

THEOREM. If α is an eigenvalue of the transformation T_{θ} , then

$$\lim_{n} \alpha^{B(n)} = 1 \quad \mu_{\theta} \text{-} a.e.$$

where B(n) is the binomial coefficient

$$\binom{n+\omega_n}{n}$$
.

Proof. Let f be the eigenfunction having eigenvalue α . For each ω in X, let ω^n be the rectangle $(\omega_1, \omega_2, \dots, \omega_n)$ of length n; let $R(\omega, i, j)$ be the rectangle $(\omega_n, \omega_n, \dots, \omega_n, i, j)$ of length n + 2, and $S(\omega, i, j)$ be the rectangle $(\omega_1, \omega_2, \dots, \omega_n, i, j)$ of length n + 2. It is known that

$$\lim_{n} (1/\mu_{\theta}(\omega^{n})) \int_{\omega^{n}} f d\mu_{\theta} = f(\omega) \quad \text{a.e.}$$

and hence

$$\lim_{n} \left| (1/\mu_{\theta}(\omega^{n})) \int_{\omega^{n}} f d\mu_{\theta} \right| = 1 \quad \text{a.e.}$$

Estimating the value of $\int_{\omega^n} f d\mu_{\theta}$, we find

$$\left| \int_{\omega^{n}} f d\mu_{\theta} \right| = \left| \sum_{j \ge i \ge \omega_{n}} \int_{S(\omega, i, j)} f d\mu_{\theta} \right| = \left| \sum_{j \ge i \ge \omega_{n}} \int_{R(\omega, i, j)} f d\mu_{\theta} \right|$$

$$\leq \sum_{j \ge \omega_{n}}^{\infty} \left| \sum_{j \ge \omega_{n}}^{\infty} \int_{R(\omega, i, j)} f d\mu_{\theta} \right| \leq \sum_{j \ge \omega_{n}}^{\infty} \left| \theta^{j} (1 - \theta)^{n+2} \right| G_{n}(j) |$$

where $G_n(j)$ is a sum of powers of α , the powers being those powers of T which send the rectangle $R(\omega, \omega_n, j)$ into the rectangle $R(\omega, i, j)$ $(i = \omega_n, \omega_n + 1, \dots, j)$.

Let S(n,r) be the number of rectangles of length n which end in r. Let $P(n,s) = S(n,0) + S(n,1) + \cdots + S(n,s)$. Note that the number B(n), appearing in the statement of the theorem, is $P(n,\omega_n)$.

We leave to the reader the laborious task of showing that

(15)
$$|G_n(j)| = |1 + \alpha^{P(n \omega_n)} + \cdots + \alpha^{P(n \omega_n) + \cdots + P(n, j-1)}|.$$

Notice that this implies $|G_n(j)| \le j - \omega_n + 1$. Now we have

$$\left| (1/\mu(\omega^n)) \int_{\omega^n} f d\mu \right| \leq (1/\theta^{\omega_n} (1-\theta)^n) \sum_{j=\omega_n}^{\infty} \theta^j (1-\theta)^{n+2} \left| G_n(j) \right| \leq 1.$$

Both sides of this inequality approach 1 as n approaches infinity, so, for the middle,

$$\lim_{n \to \infty} (1 - \theta)^2 \sum_{j=0}^{\infty} \theta^j \mid G_n(\omega_n + j) \mid = 1 \quad \text{a.e.}$$

But this can happen only if $|G_n(\omega_n + j)|$ approaches j + 1 almost everywhere. Referring to (15), we see that $\alpha^{B(n)}$ approaches 1, almost everywhere. This is what we wished to prove.

THEOREM. If $\theta < 1/2$, the transformation T_{θ} has no prime roots of unity as eigenvalues.

Proof. Suppose α is a pth root of unity and is an eigenvalue. It is easy to see that the binomial coefficients

$$\binom{p^k + i}{p^k} \quad (k = 1, 2, \dots; i = 0, 1, \dots, p^k - 1)$$

are all equal to $1 \pmod{p}$. From the previous theorem we have

(16)
$$\lim_{k \to \infty} \alpha^{\left(p^k + \omega_p k\right)} = 1 \quad \text{a.e.}$$

On the other hand, from (13), we have

$$\lim_{k} \omega_{p^k}/p^k = \theta/(1-\theta) < 1 \quad \text{a.e.}$$

since $\theta < 1/2$. That is, eventually $\omega_{p^k} < p^k$, so that eventually

Hence (16) and (17) together form the contradiction which proves the theorem. We obtain the immediate

COROLLARY. If $\theta < 1/2$, all powers of T_{θ} are ergodic.

It is interesting to notice that the infinite product:

$$f(\omega) = \alpha^{\begin{pmatrix} 1+\omega_1-1 \end{pmatrix}} \alpha^{\begin{pmatrix} 2+\omega_2-1 \end{pmatrix}} \cdots \alpha^{\begin{pmatrix} k+\omega_k-1 \end{pmatrix}} \cdots$$

if it converges, is an eigenfunction with eigenvalue α . We have seen already that if α is an eigenvalue, than

(18)
$$\lim \alpha^{\binom{n+\omega_n}{n}} = 1 \text{ a.e.}$$

Integration of (18) over X yields

$$\lim_{n} (1-\theta)^{n} \sum_{j=0}^{\infty} \theta^{j} \binom{n+j-1}{n-1} \alpha^{\binom{n+j}{n}} = 1.$$

Also left open is the question of the conjugacy of T_{θ} and T_{θ}^{-1} , and the question mentioned earlier, of the conjugacy of T_{θ} and T_{ϕ} , $\theta \neq \phi$.

BIBLIOGRAPHY

- 1. W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Math. J. 9 (1942), 27-42.
 - 2. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
 - 3. W. Feller, Completely monotone functions and sequences, Duke Math. J. 5 (1939), 661-674.
- 4. N. Kryloff and N. Bogoliouboff, La théorie générale de la mesure dans son application à l'étude des systems dynamiques de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), 65-113.
 - 5. J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136.
 - 6. D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N. J., 1941.

DUKE UNIVERSITY,
DURHAM, NORTH CAROLINA